Thermal and electrical properties of $Ag_2O-M_2O_3-P_2O_5$ glasses (0.65 $\leq Ag_2O/P_2O_5 \leq 1.5$; M = Al, B; $M_2O_3/P_2O_5 \leq 0.36$)¹

F. Branda, A. Costantini and A. Buri

Dipartimento di Ingegneria dei Materiali e della Produzione, Università di Napoli Federico II, Piazzale Tecchio, 80125 Naples (Italy)

(Received in final form 6 September 1991)

Abstract

The effect of addition of small quantities of Al_2O_3 and B_2O_3 to $Ag_2O-P_2O_5$ glasses with a composition close to that of AgPO₃ glass has been studied. Very small amounts drastically reduce the tendency to form AgPO₃ crystals. The glass transformation temperature, T_g and electrical conductivities σ are strongly affected: an increase of T_g up to 150°C and a one order of magnitude increase of σ have been recorded with respect to the binary Ag₂O-P₂O₅ glasses.

On the basis of the T_g versus composition curves, structural hypotheses have been developed. The experimental data suggest a network former role for B_2O_3 and a network modifier role for Al_2O_3 .

INTRODUCTION

Glasses of the system $Ag_2O-P_2O_5$ are known to have relatively high values of electrical conductivity [1,2]. In this paper, the effect of substitution of trivalent element oxides M_2O_3 (M = B, Al) to P_2O_5 in the range $0.65 \le Ag_2O/P_2O_5 \le 1.5$ on glass electrical conductivity and transformation temperature has been studied.

EXPERIMENTAL

The following series of glasses were prepared by melting Ag_3PO_4 , B_2O_3 , Al_2O_3 , $NH_4H_2PO_4$ analytical grade reagents in a platinum crucible in the temperature range 1000–1200°C for 4 h.

Correspondence to: F. Branda, Dipartimento di Ingegneria dei Materiali e della Produzione, Università di Napoli Federico II, Piazzale Tecchio, 80125 Napoli, Italy.

¹ Presented at the 12th National Conference on Calorimetry and Thermal Analysis, Bari, Italy, 11–13 December 1991.

(I) $(1+x)Ag_2O \cdot yM_2O_3 \cdot (1-y)P_2O_5$ where $y = 0, 0.1; 0 \le x \le 0.4$ and M = Al, B.

(II) $Ag_2O \cdot xM_2O_3 \cdot (1.5 - x)P_2O_5$ where $0 \le x \le 0.4$ and M = Al, B. In the case of Al_2O_3 , the x values for series II were never higher than 0.2. The melts were cast between brass discs.

Differential thermal analysis (DTA) was performed with a Netzsch model 404M on about 150 mg of powdered samples with particle diameter d (250 μ m $\leq d \leq$ 315 μ m) at a heating rate of 10°C min⁻¹.

Powdered Al_2O_3 was used as reference material. DTA curves display a step at the glass transition temperature. The peak temperature on the DTA derivative curve was assumed as the transition temperature, as indicated in ref. 3.

Electrical conductivity σ was determined by measuring the complex impedances in the range 0.5–60 kHz, and by applying the usual impedance analysis [4,5]. A Solartron 1250 frequency response analyser and a Solartron 1286 electrochemical interface, both controlled by a Hewlett-Packard 86B desktop computer, were used to analyse small annealed glass discs brushed with a silver conducting paint.

RESULTS

The DTA curves for the series I and II glasses are shown in Fig. 1. The step at the glass transition temperature is occasionally followed by an exothermic peak due to devitrification. The curves for $Ag_2O-P_2O_5$ glasses are reported in Fig. 1 and their transition, peak and liquidus temperature $(T_{g}, T_{p} \text{ and } T_{l})$ values are listed in Table 1 together with those of the Hruby parameter $K_{gl} = (T_p - T_g)/(T_1 - T_p)$ proposed for comparison [6] of the tendency of glasses of different composition to devitrify, which should be lower the higher K_{vi} . Table 1 suggests that the tendency decreases as x increases. In the $(1 + x)Ag_2O \cdot P_2O_5$ series one can speculate that the most simple devitrification mechanism should involve structural reorganisation of polyphosphate chains and diffusion of the mobile Ag⁺ ions in order to adjust the AgPO₃ stoichiometry. In this context the results of Table 1 can be ascribed to the greater composition and structural changes necessary as the Ag_2O content is increased. Interestingly many DTA curves for the B_2O_3 and Al_2O_3 substituted glasses (Fig. 1) show no trace of devitrification. In particular (see Fig. 1a-c) it appears that very small substitution of the trivalent element oxides to P2O5 drastically reduces the tendency of AgPO₃ crystals to form. The T_g values as a function of composition (Fig. 2) show that when the M_2O_3/P_2O_5 ratio is constant, T_g decreases as the Ag₂O content increases. The presence of M_2O_3 makes the T_g value increase with respect to the binary system values; the T_g value gets higher with progressing ratio M_2O_3/P_2O_5 . Al₂O₃ addition increases the T_g more than B₂O₃. An increase to 150°C was found for the Al₂O₃ glass with

Fig. 1. DTA curves: (a) $Ag_2O-P_2O_5$ glasses; (b) series I B_2O_3 substituted glasses; (c) series I Al_2O_3 substituted glasses; (d) series II B_2O_3 substituted glasses; (e) series II Al_2O_3 substituted glasses.

 $Al_2O_3/P_2O_5 = 0.15$. Since demixtion and crystallisation may take place above the T_g , these substitutions (especially Al_2O_3) have the advantage of increasing glass stability.

in Fig. 1) and Hruby parameter $K_{gl} = (T_p - T_g)/(T_1 - T_p)$ of binary glasses $(1 + x)Ag_2O \cdot P_2O_5$				
x	T _g	T _p	<i>T</i> ₁	Kgl
0	214	326	520	0.577
0.1	196	350	508	0.975
0.2	189	371	482	1.64
0.3	184	364	452	2.045
0.4	183	350-367	427	2.17-3.07

TABLE 1

Glass transition T_g , peak T_p , and liquidus T_1 , temperatures ^a (taken from the DTA reported in Fig. 1) and Hruby parameter $K_{gl} = (T_p - T_g)/(T_1 - T_p)$ of binary glasses $(1 + x)Ag_2O \cdot P_2O_5$

^a Temperatures in °C.

In Fig. 3 the electrical conductivity σ values at $T = 25^{\circ}$ C, are reported. The effect of the M₂O₃/P₂O₅ ratio is poor with respect to that of Ag₂O/P₂O₅. However, at the same Ag₂O/P₂O₅ and M₂O₃/P₂O₅ values, Al₂O₃ and B₂O₃ both increase σ , the effect of Al₂O₃ being greater by as much as one order of magnitude.

STRUCTURAL HYPOTHESIS

A structural hypotheses can be formed from the data in Fig. 2. T_g depends on the following factors [7]: (1) the density of covalent cross-link-

Fig. 2. T_g as a function of composition: \Box , $Ag_2O-P_2O_5$ glasses; \triangle , B_2O_3 substituted glasses; \bigcirc , Al_2O_3 substituted glasses. z denotes the ratio $z = M_2O_3/P_2O_5$; curves (a) and (b) are series II glasses, (c), (d) and (e) are series I glasses.

Fig. 3. σ versus composition curves. Symbols as in Fig. 2.

ing; (2) the number and strength of the cross-links between oxygen and the cation; (3) the oxygen density of the network.

The T_g decrease dependent on the Ag₂O content is easily explained. Like alkali oxides [8], Ag₂O is a modifier oxide which breaks oxygen that bridges and reduces the density of covalent cross-linking.

The T_g increase induced by B_2O_3 can be ascribed to its network-forming role. B_2O_3 enters glass structures by forming tetrahedral BO_4 groups [8] (see structure (a) in Fig. 4). The BO_4 groups need charge compensation. In phosphate glasses this can be accomplished in two ways [8,9], (1) by subtracting the network modifying oxide (Ag₂O) from its depolymerising function (structure (b) of Fig. 4), (2) by coupling with PO₄ groups (see structure (c) in Fig. 4). In both cases, the density of covalent cross-linking is increased and so is the T_g expected, as can be seen in Fig. 2.

Fig. 4. Structural units.

 Al_2O_3 is regarded as an intermediate oxide [8,10], i.e. one that can enter glass structures both as a network-former oxide giving rise to the same kind of structures as B_2O_3 , and a network modifier oxide. In its network former role, when the Ag_2O/P_2O_5 and M_2O_3/P_2O_5 ratios are the same, the same increase of covalent cross linking as in the case of B_2O_3 substituted glasses should be expected. The higher T_g increase observed for Al_2O_3 substituted glasses thus requires another explanation. Cations of high charge in a network modifying role produce a large T_g increase [11]. Owing to the greater coordination attainable (in this role AlO_6 groups are formed) greater T_g increases can be expected, according to Ray [7], than in the case of a network-forming role. The drastic reduction of the rate of $AgPO_3$ crystal formation, (see remarks on Fig. 1) can also be simply explained as being due to the viscosity increase induced by a higher degree of polymerisation (in the case of the B_2O_3 containing glasses), or the interstitial presence of the large charge bearing Al^{3+} cation.

CONCLUSIONS

Addition of Al_2O_3 and B_2O_3 to the $Ag_2O-P_2O_5$ glasses decreases the tendency to form AgPO₃ crystals and increases their T_g and σ values. This is especially true for Al_2O_3 glasses. The experimental data are consistent with a glass-forming role on the part of B_2O_3 and a network-modifying role on the part of Al_2O_3 .

ACKNOWLEDGEMENT

This work was supported by the Consiglio Nazionale delle Ricerche through its Progetto Finalizzato "Materiali Speciali per Tecnologie Avanzate".

REFERENCES

- 1 H.L. Tuller and M.W. Barsoun, J. Non-Cryst. Solids, 73 (1985) 331.
- 2 D. Ravaine, J. Non-Cryst. Solids, 38/39 (1980) 353.
- 3 F. Branda, A. Buri, D. Caferra and A. Marotta, Phys. Chem. Glasses, 22 (1981) 68.
- 4 D. Ravaine, J. Non-Cryst. Solids, 49 (1982) 507.
- 5 J. Maier, Z. Phys. Chem., NF, 140 (1984) 191.
- 6 D.R. Uhlmann, J. Non-Cryst. Solids, 25/26 (1977) 43.
- 7 N.H. Ray, J. Non-Cryst. Solids, 15 (1974) 423.
- 8 H. Rawson, Inorganic Glass Forming Systems, Academic Press, London and New York, 1967, pp. 16–18, 109–112, 200.
- 9 P. Beekenkamp and G. Hardeman, Verres Réfract., 20 (1966) 419.
- 10 P.W. McMillan, Glass Ceramics, Academic Press, London and New York, 1964, pp. 12-14.
- 11 F. Branda, A. Buri, D. Caferra and A. Marotta, J. Non-Cryst. Solids, 54 (1983) 193.